"Clean-Swap"

25 TONNES

of CO2 Emitted in the Production of One (400mile range) Electric Car.

5 TONNES

of CO2 Emitted in the Production of One (400mile range) Combustion Car.

Global Warming is Still Increasing as Electric Vehicles, are Powered Through an Energy Grid That is Not Largely Made Up of Renewable Energy. Therefore Not (Zero Carbon Vehicles)

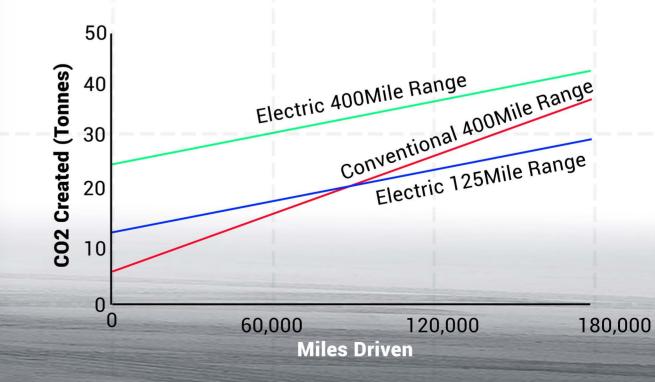
200,000 MILES

is Required to be Driven Over the Lifetime of a 400Mile Range Electric Vehicle to Produce the Same Amount of Emissions as a 400Mile Range Combustion Car Over the Same Distance.

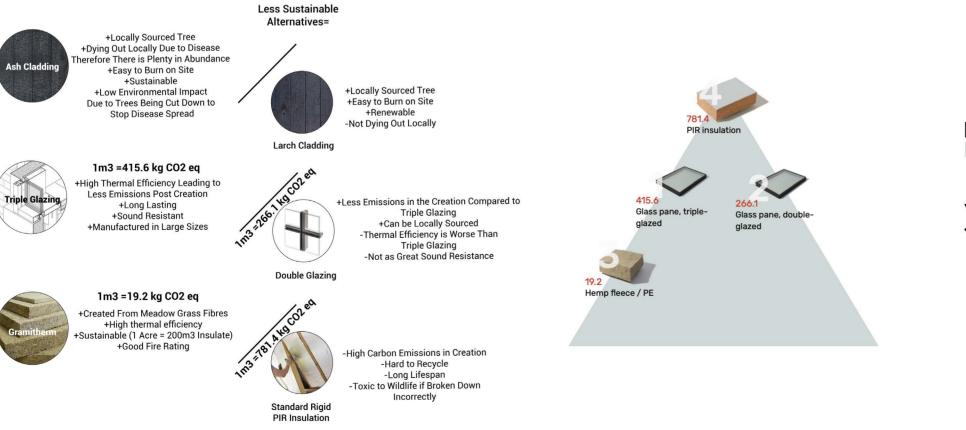
90,000 MILES

is Required to Have Been Driven to Offset the Emissions of an Electric Car with a 125 Range in Comparison to a 500mile Range Conventional Car. (With the Average Range Over a Cars Lifetime Being 200,000 Miles.

of the U.K. Grid is Renewable as of 2020

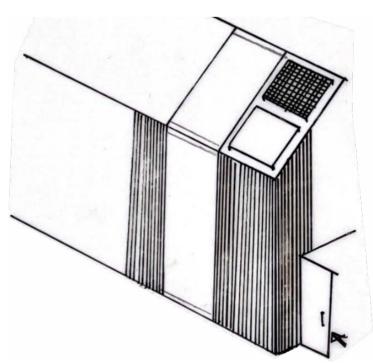

of the Worlds Energy Grid is Renewable as of 2020

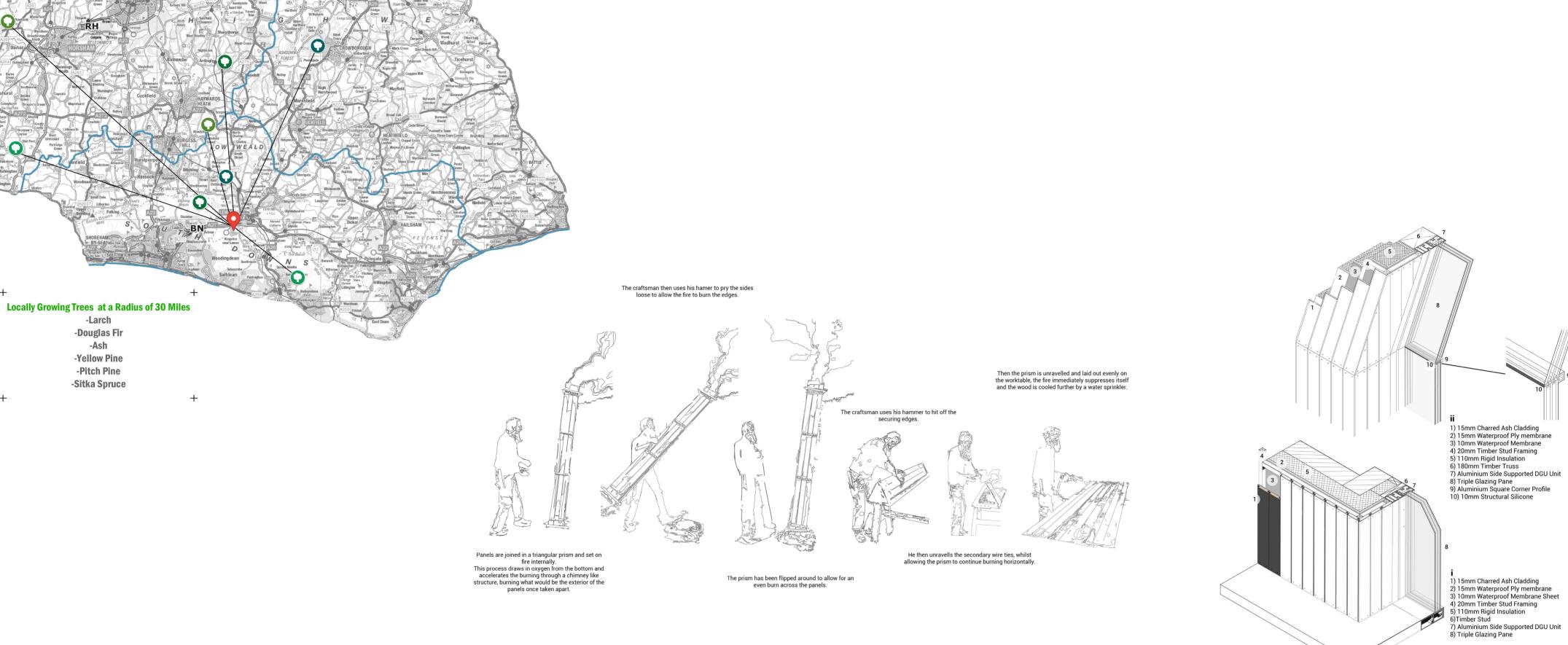
The world needs to stop pushing for a Fully Electric Future Before it has Sufficient Infrastructure or it will Worsten the Global Warming Crisis.


Convert Your Current Cars Instead!

%60

of the Worlds Energy Production is still Coal and Gas. Mining Coal and Oil and Burning it is Adding CO2 into the Atmosphere That was Not Once There, Which is the Same for the Production of Hazardous Lithium Batteries





kg CO_{2 eq} module A1-A3

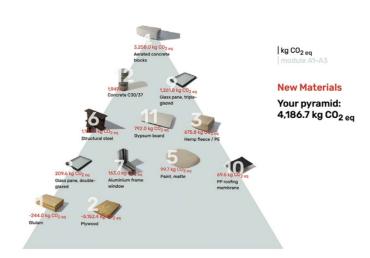
Your pyramid: 1,482.3 kg CO_{2 eq}

	* * *	 RA

Lewes Quakers Meeting House (Present)

Stage 1 - Timber Framing and Water **Resistant Membrane Coverage**

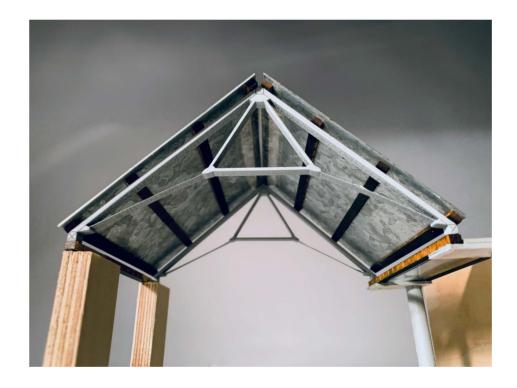
0 2 4 6 8m 1

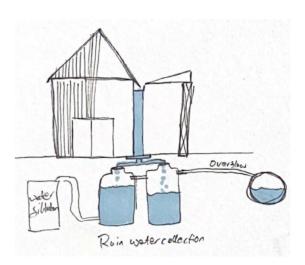

kg CO _{2 eq} module A1-A3
Upcycling Existing Materials
Your pyramid: -8,439.8 kg CO _{2 eq}

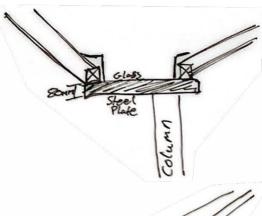
	show pyrai	result in nid ↑	reset calculation		Upcycling Existing Materials			m ²				
		material		group	impact / m3	volume [m3]		area [m2]		thickness [mm]		result
2	-	Construction t	imber	trae	-680.0 kg C02eq/m3	18	m3		m2		mm	-12,240.0 kg CO _{2 eq} /m3
3		Glass wool		mineralsk	12.8 kg C02eq/m3	6.5	m3		m2		mm	88.3 kg CO _{2 eq} /m3
4	>	PIR insulation		kunststof	781.4 kg C02eq/m3	3.4	m3		m2		mm	2,656.8 kg CO _{2 eq} /m3
5		Slate		natursten	1367.3 kg C02eq/m3	0.74	m3		m2		mm	1,011.8 kg CO _{2 eq} /m3
1		Reused brick		mineralsk	4.9 kg C02eq/m3	8.85	5 m3		m2		mm	43.4 kg CO _{2 eq} /m3

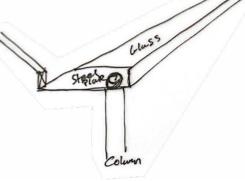
-8,439.8 kg CO_{2 eq}/m3

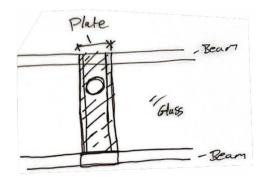
Stage 2 - Combustion to Electric Car **Conversion Centre**

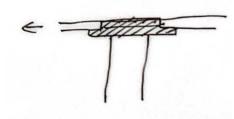

Stage 3 - 30 Years Time + Repairs

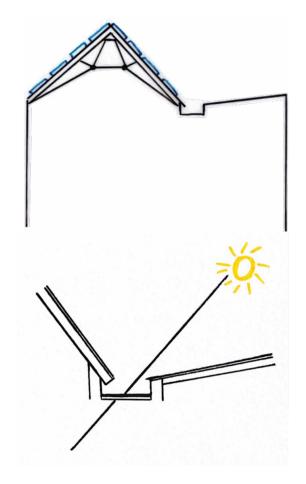

	show pyrai	result in mid ↑	reset calculation		New Materials			m²				
		material		group	impact / m3	volume [m3]		area [m2]		thickness [mm]		result
1	-	Glulam		trae	-610.0 kg CO2eq/m3	0.40	m3	20	m2	20	mm	-244.0 kg CO _{2 eq}
2	4	Plywood		trae	-649.0 kg CO2eq/m3	7.94	m3	467	m2	17	mm	-5,152.4 kg CO _{2 eq}
3	4	Hemp fleece /	PE	biobaseret	19.2 kg CO2eq/m3	35.20	m3	352	m2	100	mm	675.8 kg CO _{2 eq}
4		Aerated concr	ete blocks	mineralsk	180.0 kg CO2eq/m3	18.10	m3	181	m2	100	mm	3,258.0 kg CO _{2 eq}
5		Paint, matte		andet	2851.0 kg CO2eq/m3	0.03	m3	460	m2	0.076	mm	99.7 kg CO _{2 eq}
6		Structural ste	el	metal	8831.2 kg CO2eq/m3	0.13	m3	2.5	m2	50	mm	1,103.9 kg CO _{2 eq}
7	lç.	Aluminium fra	me window	komponenter	1172.7 kg CO2eq/m3	0.14	m3	13.9	m2	10	mm	163.0 kg CO _{2 eq}
8		Glass pane, do	ouble-glazed	komponenter	266.1 kg CO2eq/m3	0.79	m3	31.5	m2	25	mm	209.6 kg CO _{2 eq}
9		Glass pane, tri	ple-glazed	komponenter	415.6 kg C02eq/m3	3.04	m3	69	m2	44	mm	1,261.8 kg CO _{2 eq}
10		PP roofing me	mbrane	kunststof	271.5 kg CO2eq/m3	0.26	m3	171	m2	1.5	mm	69.6 kg CO _{2 eq}
11	-	Gypsum board	1	mineralsk	169.6 kg C02eq/m3	4.67	m3	467	m2	10	mm	792.0 kg CO _{2 eq}
12	L	Concrete C30	/37	mineralsk	288.0 kg CO2eq/m3	6.77	m3		m2		mm	1,949.8 kg CO _{2 eq}

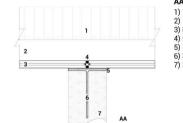


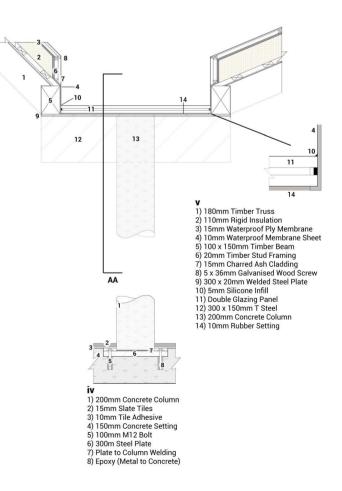


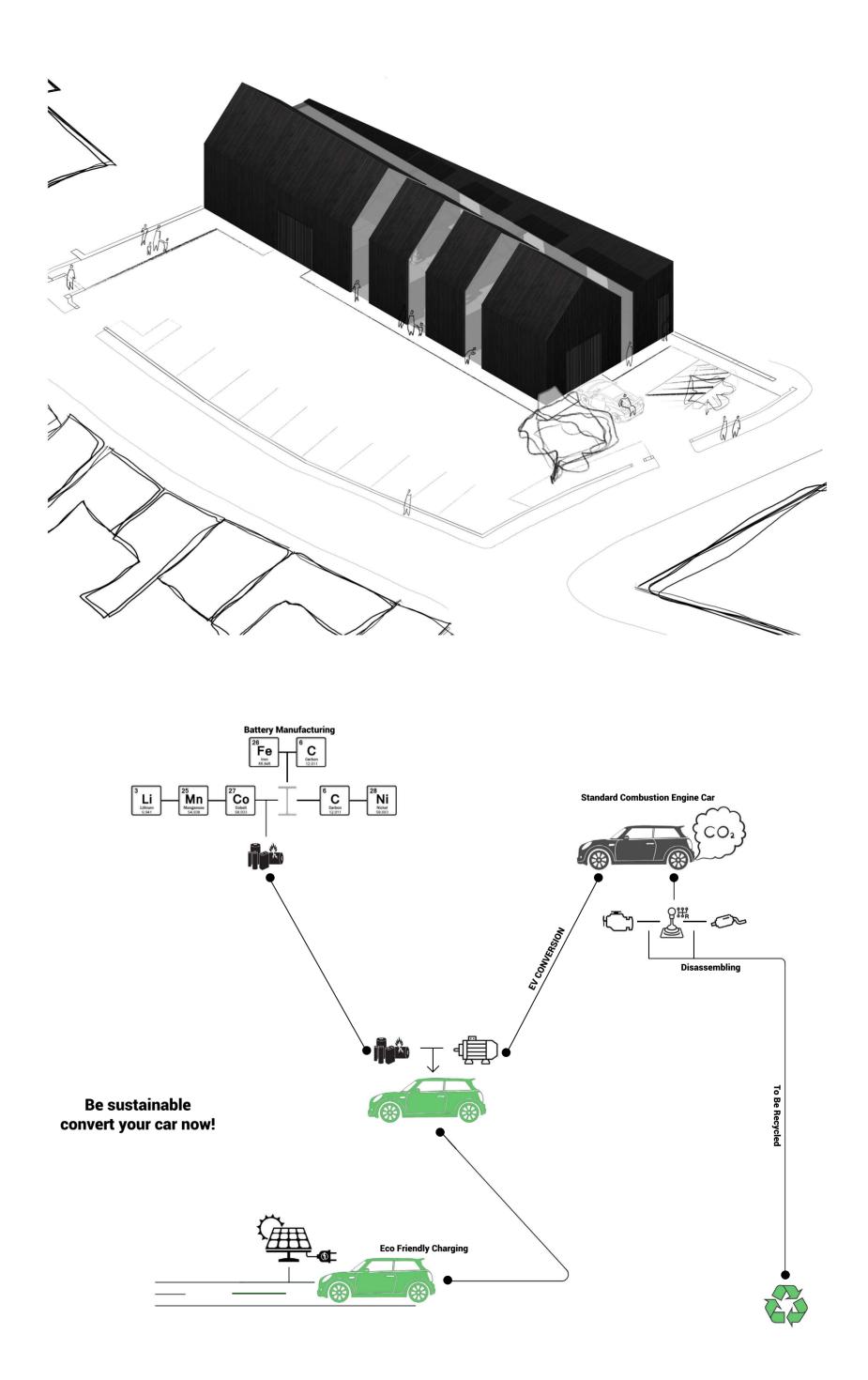












The project 'Clean Swap' addresses climate emergency and the future of converting combustion vehicles into electric by reusing the chassis, while the design introduces robotics into the process. The principles of circular economy were applied in the approach to the site's existing materials by upcycling and repurposing the timber, tiles, insulation, and plaster. Embodied carbon, cradle to gate, was addressed in the calculated emissions of the existing materials on site vs the production of new materials, leading to the considered use of charred Ash Dieback, cut down due to disease, otherwise wasted, but used here as cladding and insulating through high thermal mass.

